Anthropogenic and Climatic Factors Differentially Affect Waterbody Area and Connectivity in an Urbanizing Landscape: A Case Study in Zhengzhou, China

Author:

Liu Chang,Minor Emily S.ORCID,Garfinkel Megan B.ORCID,Mu BoORCID,Tian Guohang

Abstract

Urbanization alters the distribution and characteristics of waterbodies, potentially affecting both the habitat availability and connectivity for aquatic wildlife. We used Landsat satellite imagery to observe temporal and spatial changes in open-water habitats in Zhengzhou, a rapidly growing city in central China. We classified open water into six categories: perennial rivers, seasonal rivers and streams, canals, lakes, ponds, and reservoirs. From 1990 to 2020, in 5-year intervals, we identified, counted, and measured the area of each kind of waterbody, and we used a model selection approach with linear regressions to ask which climate and anthropogenic drivers were associated with these changes. We also used Conefor software to examine how these changes affected the landscape connectivity for waterfowl. Over the study period, lakes and canals were the only waterbody types to show statistically significant changes in surface area, increasing by 712% and 236%, respectively. Changes in lakes and canals were positively correlated with the length of water pipeline in the city. The connectivity of waterbodies fluctuated over the same period, mirroring fluctuations in the perennial Yellow River. Ponds contributed very little to landscape connectivity, and the importance of reservoirs decreased over time. Conversely, canals played an increasingly important role in landscape connectivity over time. Counterintuitively, the connectivity of waterbodies increased in the built-up part of the city. Our results show that urbanization can have unexpected effects—both positive and negative—on the connectivity and area of open-water habitats. These effects are likely to be important for waterfowl and other aquatic organisms.

Funder

Urban-Rural Green Space Resources Control and Landscape Ecological Design Disciplinary Innovation and Talents Introduction Centre Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3