Integrating Hydrological Connectivity in a Process–Response Framework for Restoration and Monitoring Prioritisation of Floodplain Wetlands in the Ramganga Basin, India

Author:

Singh Manudeo,Sinha Rajiv

Abstract

Floodplain wetlands are critical for sustaining various ecological and hydrological functions in a riverine environment. Severe anthropogenic alterations and human occupation of floodplains have threatened these wetlands in several parts of the world. A major handicap in designing sustainable restoration and monitoring strategies for these wetlands is the lack of scientific process-based understanding and information on the basin-scale controls of their degradation. Here, we offer a novel approach to integrate the connectivity of the wetlands with the surrounding landscape along with other attributes such as stream density, hydrometeorological parameters, and groundwater dynamics to explain their degradation and then to prioritise them for restoration and monitoring. We hypothesise that the best possible connectivity scenario for the existence of a wetland would be if (a) the wetland has a high connectivity with its upslope area, and (b) the wetland has a low connectivity with its downslope region. The first condition ensures the flow of water into the wetland and the second condition allows longer water residence time in the wetland. Accordingly, we define four connectivity-based wetland health scenarios—good, no impact, bad, and worst. We have implemented the proposed method in 3226 wetlands in the Ramganga Basin in north India. Further, we have applied specific selection criteria, such as distance from the nearest stream and stream density, to prioritise the wetlands for restoration and monitoring. We conclude that the connectivity analysis offers a quick process-based assessment of wetlands’ health status and serves as an important criterion to prioritise the wetlands for developing appropriate management strategies.

Funder

WWF India

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3