Development of Data Cleaning and Integration Algorithm for Asset Management of Power System

Author:

Hwang Jae-Sang,Mun Sung-Duk,Kim Tae-Joon,Oh Geun-Won,Sim Yeon-Sub,Chang Seung JinORCID

Abstract

Asset management technology is rapidly growing in the electric power industry because utilities are paying attention to which of their aged assets should be replaced first. The global trend of asset management follows risk management that comprehensively considers the probability and consequences of failures. In the asset management system, the risk assessment algorithm operates by interfacing digital datasets from various legacy systems. In this study, among the various electric power assets, we consider transmission cable systems as a representative linear asset consisting of different segments. First, the configurations and characteristics of linear asset datasets are analyzed. Second, six types of data cleaning functions are proposed for extracting dirty data from the entire dataset. Third, three types of data integration functions are developed to simulate the risk assessment algorithm. This technique supports the integration of distributed asset data in various legacy systems into one dataset. Finally, an automatic data cleaning and integration system is developed and the algorithm could repeat the cleaning and integration process until data quality is satisfied. To evaluate the performance of the proposed system, an automatic cleaning process is demonstrated using actual legacy datasets.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. Reliability Analysis for Asset Management of Electric Power Grids;Ross,2019

2. Making Connections [Guest Editorial

3. Asset-management decision-support modeling, using a health and risk model

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3