A review of asset management using artificial intelligence‐based machine learning models: Applications for the electric power and energy system

Author:

Rajora Gopal Lal1ORCID,Sanz‐Bobi Miguel A.1,Tjernberg Lina Bertling2,Urrea Cabus José Eduardo3

Affiliation:

1. Institute for Research in Technology Universidad Pontificia Comillas Madrid Madrid Spain

2. Division of Electric Power and Energy Systems KTH Royal Institute of Technology Stockholm Stockholm Sweden

3. School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Stockholm Sweden

Abstract

AbstractPower system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large‐scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3