Abstract
A large amount of the Iranian energy demand is related to the building sector, mainly due to its obsolescence. In this paper, a second-skin system has been implemented as a retrofit action for an office building, evaluating the effect of a tensile material as second-skin in terms of primary energy saving, carbon dioxide equivalent emissions, and simple payback period. The analysis was carried out through numerical simulations across a whole year and for four Iranian cities (Tabriz, Teheran, Yazd, and Bandar Abbas) in four different climates (cold, temperate, hot-dry, and hot-wet), and with the building aligned at either north-south or east-west. Moreover, an economic analysis was carried out suggesting different incentive policies to promote building energy refurbishment. The simulation results highlighted a favorable orientation for buildings in Iran, suggesting a guideline for new constructions. Indeed, the best results were achieved for an east-west orientation of the building (up to a primary energy saving of 13.6% and reduction of carbon dioxide equivalent emissions of 45.5 MgCO2,eq, in Yazd), with a decrease of the annual specific total (cooling and thermal) energy demand of 37.9 kWh/m2/year. The simple payback period values were also lower in the east-west orientation than the north-south one.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference78 articles.
1. Data & Statistics-IEA
https://www.iea.org/data-and-statistics/data-browser?country=IRAN&fuel=Energy%20consumption&indicator=TFCbySource
2. A Review on Energy and Renewable Energy Policies in Iran
3. An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran
4. International Energy Agency Iran-Countries & Regions
https://www.iea.org/countries/Iran
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献