Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment

Author:

Oogathoo ShaliniORCID,Duchesne LouisORCID,Houle Daniel,Kneeshaw Daniel

Abstract

Historical temperature records reveal that the boreal forest has been subjected to a significant lengthening of the thermal growing season since the middle of the last century, and climate models predict that this lengthening will continue in the future. Nevertheless, the potential phenological response of trees to changes in growing season length remains relatively undocumented, particularly for evergreen boreal tree species growing in cold environments. Here, we used the recently defined zero growth (ZG) concept to extract and characterize the metrics of seasonal radial growth dynamics for 12 balsam fir trees subjected to a 12-year soil warming experiment using high resolution radius dendrometer measurements. The ZG concept provides an accurate determination of growth seasonality (onset, cessation, duration, growth rates, and total growth) for these slow-growing trees characterized by significant shrinkage in tree diameter due to dehydration in the winter. Our analysis revealed that, on average, growth onset starts at day 152 ± 7 (±1 SE, 31 May–1 June) and ceases at day 244 ± 27 (31 August–1 September), for a growing season duration of about 3 months (93 ± 26 days) over a 12-year period. Growing season duration is mainly determined by growth cessation, while growth onset varies little between years. A large part (80%) of the total growth occurs in the first 50 days of the growing season. Given the dynamics of growth, early growth cessation (shorter growing season) results in a higher average seasonal growth rate, meaning that longer growing seasons are not necessarily associated with greater tree growth. Soil warming induces earlier growth cessation, but increases the mean tree growth rate by 18.1% and the total annual growth by 9.1%, on average, as compared to the control trees. Our results suggest that a higher soil temperature for warmed trees contributes to providing better growth conditions and higher growth rates in the early growing season, when the soil temperature is low and the soil water content is elevated because of snowmelt. Attaining a critical soil temperature earlier, coupled with lower soil water content, may have contributed to the earlier growth cessation and shorter growing season of warmed trees.

Funder

Mitacs

Ministère des Forêts, de la Faune et des Parcs

Ouranos

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3