Human Contribution to the Lengthening of the Growing Season during 1950–99

Author:

Christidis Nikolaos1,Stott Peter A.1,Brown Simon1,Karoly David J.2,Caesar John1

Affiliation:

1. Met Office, Hadley Centre for Climate Prediction and Research, Exeter, United Kingdom

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Increasing surface temperatures are expected to result in longer growing seasons. An optimal detection analysis is carried out to assess the significance of increases in the growing season length during 1950–99, and to measure the anthropogenic component of the change. The signal is found to be detectable, both on global and continental scales, and human influence needs to be accounted for if it is to be fully explained. The change in the growing season length is found to be asymmetric and largely due to the earlier onset of spring, rather than the later ending of autumn. The growing season length, based on exceedence of local temperature thresholds, has a rate of increase of about 1.5 days decade−1 over the observation area. Local variations also allow for negative trends in parts of North America. The analysis suggests that the signal can be attributed to the anthropogenic forcings that have acted on the climate system and no other forcings are necessary to describe the change. Model projections predict that under future climate change the later ending of autumn will also contribute significantly to the lengthening of the growing season, which will increase in the twenty-first century by more than a month. Such major changes in seasonality will affect physical and biological systems in several ways, leading to important environmental and socioeconomic consequences and adaptation challenges.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3