A 4H-SiC CMOS Oscillator-Based Temperature Sensor Operating from 298 K up to 573 K

Author:

Rinaldi Nicola1ORCID,Liguori Rosalba1ORCID,May Alexander2ORCID,Rossi Chiara2ORCID,Rommel Mathias2ORCID,Rubino Alfredo1ORCID,Licciardo Gian Domenico1ORCID,Di Benedetto Luigi1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

2. Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Schottkystraße 10, 91058 Erlangen, Germany

Abstract

In this paper, we propose a temperature sensor based on a 4H-SiC CMOS oscillator circuit and that is able to operate in the temperature range between 298 K and 573 K. The circuit is developed on Fraunhofer IISB’s 2 μm 4H-SiC CMOS technology and is designed for a bias voltage of 20 V and an oscillation frequency of 90 kHz at room temperature. The possibility to relate the absolute temperature with the oscillation frequency is due to the temperature dependency of the threshold voltage and of the channel mobility of the transistors. An analytical model of the frequency-temperature dependency has been developed and is used as a starting point for the design of the circuit. Once the circuit has been designed, numerical simulations are performed with the Verilog-A BSIM4SiC model, which has been opportunely tuned on Fraunhofer IISB’s 2 μm 4H-SiC CMOS technology, and their results showed almost linear frequency-temperature characteristics with a coefficient of determination that was higher than 0.9681 for all of the bias conditions, whose maximum is 0.9992 at a VDD = 12.5 V. Moreover, we considered the effects of the fabrication process through a Monte Carlo analysis, where we varied the threshold voltage and the channel mobility with different values of the Gaussian distribution variance. For example, at VDD = 20 V, a deviation of 17.4% from the nominal characteristic is obtained for a Gaussian distribution variance of 20%. Finally, we applied the one-point calibration procedure, and temperature errors of +8.8 K and −5.8 K were observed at VDD = 15 V.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3