CNN-Based Facial Expression Recognition with Simultaneous Consideration of Inter-Class and Intra-Class Variations

Author:

Pham Trong-Dong1,Duong Minh-Thien1ORCID,Ho Quoc-Thien1,Lee Seongsoo2ORCID,Hong Min-Cheol3ORCID

Affiliation:

1. Department of Information and Telecommunication Engineering, Soongsil University, Seoul 06978, Republic of Korea

2. Department of Intelligent Semiconductor, Soongsil University, Seoul 06978, Republic of Korea

3. School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea

Abstract

Facial expression recognition is crucial for understanding human emotions and nonverbal communication. With the growing prevalence of facial recognition technology and its various applications, accurate and efficient facial expression recognition has become a significant research area. However, most previous methods have focused on designing unique deep-learning architectures while overlooking the loss function. This study presents a new loss function that allows simultaneous consideration of inter- and intra-class variations to be applied to CNN architecture for facial expression recognition. More concretely, this loss function reduces the intra-class variations by minimizing the distances between the deep features and their corresponding class centers. It also increases the inter-class variations by maximizing the distances between deep features and their non-corresponding class centers, and the distances between different class centers. Numerical results from several benchmark facial expression databases, such as Cohn-Kanade Plus, Oulu-Casia, MMI, and FER2013, are provided to prove the capability of the proposed loss function compared with existing ones.

Funder

Korean Government, Ministry of Trade, Industry and Energy

Industrial Technology Challenge Track of MOTIE/Korea Evaluation Institute of Industrial Technology

Research and Development Program of MOTIE

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3