Research on a Prediction Model of Water Quality Parameters in a Marine Ranch Based on LSTM-BP

Author:

Xu He1,Lv Bin1,Chen Jie1,Kou Lei1ORCID,Liu Hailin1,Liu Min1

Affiliation:

1. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), No. 2, Huiying Street, Shanghe Demonstration Area, Qingdao 266318, China

Abstract

Water quality is an important factor affecting marine pasture farming. Water quality parameters have the characteristics of time series, showing instability and nonlinearity. Previous water quality prediction models are usually based on specific assumptions and model parameters, which may have limitations for complex water environment systems. Therefore, in order to solve the above problems, this paper combines long short-term memory (LSTM) and backpropagation (BP) neural networks to construct an LSTM-BP combined water quality parameter prediction model and uses the root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency coefficient (NSE) to evaluate the model. Experimental results show that the prediction performance of the LSTM-BP model is better than other models. On the RMSE and MAE indicators, the LSTM-BP model is 76.69% and 79.49% lower than other models, respectively. On the NSE index, the LSTM-BP model has improved by 34.13% compared with other models. The LSTM-BP model can effectively reflect time series characteristics and nonlinear mapping capabilities. This research provides a new method and reference for the prediction of water quality parameters in marine ranching and further enables the intelligent and sustainable development of marine ranching.

Funder

National Development and Reform Commission Smart Ocean Major Project

Study of Marine Environment Perception Technology Based on Multimodal Sensors Fusion

Major Science and Technology Innovation Projects of Shandong Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3