A Water Quality Prediction Method Based on Deep LSTM Network

Author:

Jiang Nian,Hu Zechen,Huang Yifeng,Li Lulu,Xu Chongyang

Abstract

Abstract Water quality parameters are key factors affecting marine ranching. The water quality parameters are not consistent, which are usually complex and variable. The traditional water quality prediction methods have problems such as low long-term prediction accuracy and weak generalization ability. In order to solve the above problems, this paper proposes a multivariate water quality prediction model based on WT-LSTM, which is compared with the BP neural network model for short-term prediction and long-term prediction of dissolved oxygen water quality parameters, and the experimental results show that the WT-LSTM model has good accuracy and generalization in both short-term and long-term prediction, and the short-term prediction accuracy can be up to 98.47% and the long-term prediction accuracy can be up to 98.28%.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3