A Fishery Water Quality Monitoring and Prediction Evaluation System for Floating UAV Based on Time Series

Author:

Cheng Lei,Tan XiyueORCID,Yao Dong,Xu Wenxia,Wu Huaiyu,Chen YangORCID

Abstract

In recent years, fishery has developed rapidly. For the vital interests of the majority of fishermen, this paper makes full use of Internet of Things and air–water amphibious UAV technology to provide an integrated system that can meet the requirements of fishery water quality monitoring and prediction evaluation. To monitor target water quality in real time, the water quality monitoring of the system is mainly completed by a six-rotor floating UAV that carries water quality sensors. The GPRS module is then used to realize remote data transmission. The prediction of water quality transmission data is mainly realized by the algorithm of time series comprehensive analysis. The evaluation rules are determined according to the water quality evaluation standards to evaluate the predicted water quality data. Finally, the feasibility of the system is proved through experiments. The results show that the system can effectively evaluate fishery water quality under different weather conditions. The prediction accuracy of the pH, dissolved oxygen content, and ammonia nitrogen content of fishery water quality can reach 99%, 98%, and 99% on sunny days, and reach 92%, 98%, and 91% on rainy days.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. GNSS‐based passive UAV monitoring: a feasibility study

2. Small unmanned aerial system development and applications in precision agriculture and natural resource management

3. UAS: Developments with small unmanned aerial systems;Geoff;Asia-Pac. Def. Report.,2019

4. UAV-based Regional Environmental Monitoring IoT System

5. Design and implementation of monitoring and control method for UAV water quality monitoring and autonomous cruise operation;Li;J. Prev. Med. Chin. People’s Lib. Army,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3