Hydrogeochemical Characteristics of Hot Springs and Their Short-Term Seismic Precursor Anomalies along the Xiaojiang Fault Zone, Southeast Tibet Plateau

Author:

Li Chenhua,Zhou Xiaocheng,Yan Yucong,Ouyang Shupei,Liu Fengli

Abstract

Significant hydrogeochemical changes may occur prior- and post-earthquakes. The Xiaojiang fault zone (XJF), situated in a highly deformed area of the southeastern margin of the Tibetan Plateau, is one of the active seismic areas. In this study, major and trace elements, and hydrogen and oxygen isotopes of 28 sites in hot springs along the XJF were investigated from June 2015 to April 2019. The meteoric water acts as the primary water source of the hot spring in the XJF and recharged elevations ranged from 1.8 to 4.5 km. Most of the hot spring water in the study area was immature water and the water–rock reaction degree was weak. The temperature range was inferred from an equation based on the SiO2 concentration and chemical geothermal modeling: 24.3~96.0 °C. The circulation depth for the springs was estimated from 0.45 to 4.04 km. We speculated the meteoric water firstly infiltrated underground and became heated by heat sources, and later circulated to the earth’s surface along the fault and fracture and finally constituted hot spring recharge. Additionally, a continuous monitoring was conducted every three days in the Xundian hot spring since April 2019, and in Panxi and Qujiang hot springs since June 2019. There were short-term (4–35 d) seismic precursor anomalies of the hydrochemical compositions prior to the Xundian ML4.2, Dongchuan ML4.2, and Shuangbai ML5.1 earthquakes. The epicentral distance of anomalous sites ranged from 19.1 to 192.8 km. The anomalous amplitudes were all over 2 times the anomaly threshold. The concentrations of Na+, Cl−, and SO42− are sensitive to the increase of stress in the XJF. Modeling on hydrology cycles of hot springs can provide a plausible physicochemical basis to explain geochemical anomalies in water and the hydrogeochemical anomaly may be useful in future earthquake prediction research of the study area.

Funder

National Natural Science Foundation of China

National Key Research and Development Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3