Geochemical Characteristics of Thermal Springs and Insights Into the Intersection Between the Xiaojiang Fault and the Red River Fault, Southeastern Tibet Plateau

Author:

Shao Weiye12,Liu Zhaofei3ORCID,Li Ying1ORCID,Chen Zhi1ORCID,Lu Chang1,Zhao Ciping2,Wang Yun4,Li Qilin2,Gao Zihan1,Luo Yili1,Ran Hua2,Fan Shaohui2

Affiliation:

1. CEA Key Laboratory of Earthquake Prediction Institute of Earthquake Forecasting Beijing China

2. Yunnan Earthquake Agency Kunming China

3. School of the Earth and Resources China University of Geosciences Beijing China

4. Department of Insurance School of Finance Yunnan University of Finance and Economics Kunming China

Abstract

AbstractDuring the ongoing uplift and expansion of the southeastern margin of the Tibetan Plateau, the front edge of the Sichuan‐Yunnan rhombic block (SYB) has experienced intense tectonic activity and frequent seismicity. In this study, the fluid geochemistry in the primary active faults at the front edge of the SYB was investigated, with the aim of understanding the tectonic activity and intersection relationship between the Xiaojiang fault (XJF) and the Red River fault (RRF). Thermal spring water and gases exhibit a coupled spatial distribution relationship; relatively high ion concentrations and 3He/4He ratios (Rc/Ra ratios of 0.21 to 0.62Ra) are observed along the RRF, Qujiang fault (QJF), and Shiping‐Jianshui fault (SJF). Multidisciplinary research results have indicated that mantle‐derived intrusion has been detected in the crust beneath the QJF and SJF. The current tectonic activity in the front edge of the SYB remains intense, with compressive stresses shifting toward the western side of the XJF and accumulating on the QJF and SJF. This has led to the development of fractures, enhancing the water–rock interaction and deep‐derived gas degassing along the faults. The unmixing characteristics of fluids at the intersection area of these two faults suggest the absence of conduits for fluid migration between the faults. Owing to the lower gas 3He/4He ratios, lower shear strain rates, stable reservoir temperature field, and extremely low historical seismicity in the Indo‐Chinese block, it is speculated that the current movement of the XJF may not cut through the RRF and continue southward.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3