Integration of Whole-Genome Resequencing and Transcriptome Sequencing Reveals Candidate Genes in High Glossiness of Eggshell

Author:

Song Xiang1,Li Shuo2,He Shixiong1,Zheng Hongxiang1,Li Ruijie1,Liu Long1,Geng Tuoyu1,Zhao Minmeng1ORCID,Gong Daoqing1

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Beinongda Agriculture and Animal Husbandry Technology Co., Ltd., Taizhou 225300, China

Abstract

Eggshell gloss is an important characteristic for the manifestation of eggshell appearance. However, no study has yet identified potential candidate genes for eggshell gloss between high-gloss (HG) and low-gloss (LG) chickens. The aim of this study was to perform a preliminary investigation into the formation mechanism of eggshell gloss and to identify potential genes. The eggshell gloss of 300-day-old Rhode Island Red hens was measured from three aspects. Uterine tissues of the selected HG and LG (n = 5) hens were collected for RNA-seq. Blood samples were also collected for whole-genome resequencing (WGRS). RNA-seq analysis showed that 150 differentially expressed genes (DEGs) were identified in the uterine tissues of HG and LG hens. These DEGs were mainly enriched in the calcium signaling pathway and the neuroactive ligand–receptor interaction pathway. Importantly, these two pathways were also significantly enriched in the WGRS analysis results. Further joint analysis of WGRS and RNA-seq data revealed that 5-hydroxytryptamine receptor 1F (HTR1F), zinc finger protein 536 (ZNF536), NEDD8 ubiquitin-like modifier (NEDD8), nerve growth factor (NGF) and calmodulin 1 (CALM1) are potential candidate genes for eggshell gloss. In summary, our research provides a reference for the study of eggshell gloss and lays a foundation for improving egg glossiness in layer breeding.

Funder

STI2030—Major Projects

Jiangsu Agricultural Science and Technology Innovation Fund

“JBGS” Project of Seed Industry Revitalization in Jiangsu Province

Jiangsu Province Major Agricultural New Varieties Creation Project

Qinghai Science and Technology Achievement Transformation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3