Open-Set Recognition of Individual Cows Based on Spatial Feature Transformation and Metric Learning

Author:

Wang Buyu123ORCID,Li Xia4,An Xiaoping234,Duan Weijun1ORCID,Wang Yuan234ORCID,Wang Dian3,Qi Jingwei234ORCID

Affiliation:

1. College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China

2. Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China

3. National Center of Technology Innovation for Dairy-Breeding and Production Research Subcenter, Hohhot 010018, China

4. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010010, China

Abstract

The automated recognition of individual cows is foundational for implementing intelligent farming. Traditional methods of individual cow recognition from an overhead perspective primarily rely on singular back features and perform poorly for cows with diverse orientation distributions and partial body visibility in the frame. This study proposes an open-set method for individual cow recognition based on spatial feature transformation and metric learning to address these issues. Initially, a spatial transformation deep feature extraction module, ResSTN, which incorporates preprocessing techniques, was designed to effectively address the low recognition rate caused by the diverse orientation distribution of individual cows. Subsequently, by constructing an open-set recognition framework that integrates three attention mechanisms, four loss functions, and four distance metric methods and exploring the impact of each component on recognition performance, this study achieves refined and optimized model configurations. Lastly, introducing moderate cropping and random occlusion strategies during the data-loading phase enhances the model’s ability to recognize partially visible individuals. The method proposed in this study achieves a recognition accuracy of 94.58% in open-set scenarios for individual cows in overhead images, with an average accuracy improvement of 2.98 percentage points for cows with diverse orientation distributions, and also demonstrates an improved recognition performance for partially visible and randomly occluded individual cows. This validates the effectiveness of the proposed method in open-set recognition, showing significant potential for application in precision cattle farming management.

Funder

Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University

Science and Technology Major Project of Inner Mongolia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3