Setup, Test and Validation of a UHF RFID System for Monitoring Feeding Behaviour of Dairy Cows

Author:

Adrion FelixORCID,Keller Markus,Bozzolini Giulia Bianca,Umstatter Christina

Abstract

Feeding behaviour can be used as an important indicator to support animal management. However, using feeding behaviour as a tool for dairy cow management an automatic sensor system is needed. Hence, the objective of this study was to setup, test and validate a ultra-high frequency (UHF) radio-frequency identification (RFID) system for measuring time dairy cows spent at the feed fence using two types of passive UHF ear tags. In a first experiment, the reading area of the system was evaluated in two antenna positions. Subsequently, the UHF RFID system was validated with video observations and compared to the measurements of chewing time of a noseband pressure sensor and of the time spent at the feed fence registered by a sensor system with real-time localisation. Differences in the reading area were detected between the two antenna positions and types of ear tag. The antenna position leading to less false positive registrations was chosen for the experiment with cows. The validation with video data showed a high average sensitivity (93.7 ± 5.6%, mean ± standard deviation), specificity (97.8 ± 1.1%), precision (93.8 ± 2.3%) and accuracy (96.9 ± 0.9%) of the UHF RFID system for measuring the time spent at the feed fence. The comparison with the noseband pressure sensor and the real-time localisation resulted in high correlations with a correlation coefficient of r = 0.95 and r = 0.93, respectively. However, substantial absolute differences between the three systems pointed out differences between direct and indirect measures of feeding behaviour in general and between the different sensors in particular. Thus, detailed considerations are necessary before interpreting automatically measured feeding data generally.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3