Distinct Roles of Estrogen Receptors in the Regulation of Vitellogenin Expression in Orange-Spotted Grouper (Epinephelus coioides)

Author:

Ye Zhifeng,Zhao Tingting,Wei Qianhao,Lin Haoran,Zhang YongORCID,Li Shuisheng

Abstract

During their breeding season, estrogen induces vitellogenin (VTG) production in the liver of teleost fish through estrogen receptors (ERs) that support oocyte vitellogenesis. There are at least three ER subtypes in teleost fish, but their roles in mediating E2-induced VTG expression have yet to be ascertained. In this study, we investigated the expression of vtgs and ers in the liver of orange-spotted grouper (Epinephelus coioides). Their expression levels were significantly increased in the breeding season and were upregulated by an estradiol (E2) injection in female fish, except for the expression of erβ1. The upregulation of vtgs, erα and erβ2 by E2 was also observed in primary hepatocytes, but these stimulatory effects could be abolished by ER antagonist ICI182780 treatment. Subsequent studies showed that ERβ antagonist Cyclofenil downregulated the E2-induced expression of vtg, erα, and erβ2, while the ERβ agonist DPN simulated their expression. Knockdown of erβ2 by siRNA further confirmed that ERβ2 mediated the E2-induced expression of vtgs and erα. To reveal the mechanism of ERβ2 in the regulation of erα expression, the erα promoter was cloned, and its activity was examined in cells. E2 treatment simulated the activity of the erα promoter in the presence of ERβ2. Deletions and site-directed mutations showed that the E2 up-regulated transcriptional activity of erα occurs through a classical half-estrogen response element- (ERE) dependent pathway. This study reveals the roles of ER subtypes in VTG expression in orange-spotted grouper and provides a possible explanation for the rapid and efficient VTG production in this species during the breeding season.

Funder

Guangdong Provincial Key R&D Program

National Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3