Abstract
Brassica napus L. has become one of the most important oil-bearing crops, and drought stress severely influences its yield and quality. By combining physio-biochemical characterization and transcriptome analysis, we studied the response of B. napus plants to different degrees of drought stress. Some physio-biochemical traits, such as fresh weight (FW), dry weight (DW), abscisic acid (ABA) content, net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr), were measured, and the total content of the epidermal wax/cutin, as well as their compositions, was determined. The results suggest that both stomatal transpiration and cuticular transpiration are affected when B. napus plants are subjected to varying degrees of drought stress. A total of 795 up-regulated genes and 1050 down-regulated genes were identified under severe drought stress by transcriptome analysis. Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) revealed that the up-regulated genes were mainly enriched in the stress response processes, such as response to water deprivation and abscisic acid, while the down-regulated genes were mainly enriched in the chloroplast-related parts affecting photosynthesis. Moreover, overexpression of BnaA01.CIPK6, an up-regulated DEG, was found to confer drought tolerance in B. napus. Our study lays a foundation for a better understanding of the molecular mechanisms underlying drought tolerance in B. napus.
Funder
Higher Education Discipline Innovation Project
HZAU-AGIS Cooperation Fund
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献