Four Novel PAX9 Variants and the PAX9-Related Non-Syndromic Tooth Agenesis Patterns

Author:

Liu Haochen,Liu Hangbo,Su Lanxin,Zheng Jinglei,Feng Hailan,Liu Yang,Yu MiaoORCID,Han DongORCID

Abstract

The purpose of this research was to investigate and identify PAX9 gene variants in four Chinese families with non-syndromic tooth agenesis. We identified pathogenic gene variants by whole-exome sequencing (WES) and Sanger sequencing and then studied the effects of these variants on function by bioinformatics analysis and in vitro experiments. Four novel PAX9 heterozygous variants were identified: two missense variants (c.191G > T (p.G64V) and c.350T > G (p.V117G)) and two frameshift variants (c.352delC (p.S119Pfs*2) and c.648_649insC(p.Y217Lfs*100)). The bioinformatics analysis showed that these variants might be pathogenic. The tertiary structure analysis showed that these four variants could cause structural damage to PAX9 proteins. In vitro functional studies demonstrated that (1) the p.Y217Lfs*100 variant greatly affects mRNA stability, thereby affecting endogenous expression; (2) the p. S119Pfs* 2 variant impairs the subcellular localization of the nuclear expression of the wild-type PAX9 protein; and (3) the four variants (p.G64V, p.V117G, p.S119Pfs*2, and p.Y217Lfs*100) all significantly affect the downstream transcriptional activity of the BMP4 gene. In addition, we summarized and analyzed tooth missing positions caused by PAX9 variants and found that the maxillary second molar (84.11%) and mandibular second molar (84.11%) were the most affected tooth positions by summarizing and analyzing the PAX9-related non-syndromic tooth agenesis positions. Our results broaden the variant spectrum of the PAX9 gene related to non-syndromic tooth agenesis and provide useful information for future genetic counseling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3