Blaze a New Trail: Plant Virus Xylem Exploitation

Author:

Sun Yong-DuoORCID,Spellman-Kruse Arianna,Folimonova Svetlana Y.ORCID

Abstract

Viruses are trailblazers in hijacking host systems for their own needs. Plant viruses have been shown to exploit alternative avenues of translocation within a host, including a challenging route through the xylem, to expand their niche and establish systemic spread, despite apparent host-imposed obstacles. Recent findings indicate that plant viruses from many families could successfully hack xylem cells in a broad range of plant hosts, including herbaceous and perennial woody plants. Similar to virus-related structures present in the phloem, virus particles and membrane-containing viral replication complexes are often observed in the xylem. Except for a few single-stranded DNA viruses in the family Geminiviridae and a negative-sense single-stranded RNA rhabdovirus, Lettuce necrotic yellows virus, the majority of the viruses that were detected in the xylem belong to the group of positive-sense RNA viruses. The diversity of the genome organization and virion morphology of those viruses indicates that xylem exploitation appears to be a widely adapted strategy for plant viruses. This review outlines the examples of the xylem-associated viruses and discusses factors that regulate virus inhabitation of the xylem as well as possible strategies of virus introduction into the xylem. In some cases, plant disease symptoms have been shown to be closely related to virus colonization of the xylem. Inhibiting viral xylem invasion could raise potential attractive approaches to manage virus diseases. Therefore, the identification of the host genes mediating virus interaction with the plant xylem tissue and understanding the underlying mechanisms call for more attention.

Funder

National Science Foundation

United States Department of Agriculture

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Cucumber mosaic virus (CMV) on the Content of Some Cucumber Genotypes of Nitrogen, Protein, Phenols, and Flavonoids;European Journal of Theoretical and Applied Sciences;2023-11-01

2. Plant virology;Current Biology;2023-06

3. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato;International Journal of Molecular Sciences;2023-02-02

4. Genomics: Infectious Disease and Host–Pathogen Interaction;International Journal of Molecular Sciences;2023-01-16

5. How do they do it? The infection biology of potyviruses;Advances in Virus Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3