Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato

Author:

Sacco Botto Camilla12,Matić Slavica1ORCID,Moine Amedeo1,Chitarra Walter13ORCID,Nerva Luca13ORCID,D’Errico Chiara1ORCID,Pagliarani Chiara1ORCID,Noris Emanuela1ORCID

Affiliation:

1. Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy

2. Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy

3. Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy

Abstract

Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant’s adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3