Soil-Derived Dust PM10 and PM2.5 Fractions in Southern Xinjiang, China, Using an Artificial Neural Network Model

Author:

Gao Shuang1,Liu Yaxin1,Zhang Jieqiong1,Yu Jie1,Chen Li1,Sun Yanling1,Mao Jian1,Zhang Hui1,Ma Zhenxing1,Yang Wen2,Hong Ningning3,Azzi Merched4,Zhao Hong5,Wang Hui6,Bai Zhipeng12

Affiliation:

1. School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China

2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China

3. Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China

4. Department of Planning, Industry and Environment, New South Wales Government, Parramatta, NSW 7057, Australia

5. College of Computer Science, Nankai University, Tianjin 300071, China

6. Tianjin Changhai Environmental Monitoring Service Corporation, Tianjin 300000, China

Abstract

Soil-derived dust emissions have been widely associated with health and environmental problems and should therefore be accurately and reliably estimated and assessed. Of these emissions, the inhalable PM10 and PM2.5 are difficult to estimate. Consequently, to calculate PM10 and PM2.5 emissions from soil erosion, an approach based on an artificial neural network (ANN) model which provides a multilayered, fully connected framework that relates input parameters and outcomes was proposed in this study. Owing to the difficulty in obtaining the actual emissions of soil-derived PM10 and PM2.5 over a broad area, the PM10 and PM2.5 simulated results of the ANN model were compared with the published results simulated by the widely used wind erosion prediction system (WEPS) model. The PM10 and PM2.5 emission results, based on the WEPS, agreed well with the field data, with R2 values of 0.93 and 0.97, respectively, indicating the potential for using the WEPS results as a reference for training the ANN model. The calculated r, RMSE and MAE for the results simulated by the WEPS and ANN were 0.78, 3.37 and 2.31 for PM10 and 0.79, 1.40 and 0.91 for PM2.5, respectively, throughout Southern Xinjiang. The uncertainty of the soil-derived PM10 and PM2.5 emissions at a 95% CI was (−66–106%) and (−75–108%), respectively, in 2016. The results indicated that by using parameters that affect soil erodibility, including the soil pH, soil cation exchange capacity, soil organic content, soil calcium carbonate, wind speed, precipitation and elevation as input factors, the ANN model could simulate soil-derived particle emissions in Southern Xinjiang. The results showed that when the study domain was reduced from the entire Southern Xinjiang region to its five administrative divisions, the performance of the ANN improved, producing average correlation coefficients of 0.88 and 0.87, respectively, for PM10 and PM2.5. The performances of the ANN differed by study period, with the best result obtained during the sand period (March to May) followed by the nonheating (June to October) and heating periods (November to February). Wind speed, precipitation and soil calcium carbonate were the predominant input factors affecting particle emissions from wind erosion sources. The results of this study can be used as a reference for the wind erosion prevention and soil conservation plans in Southern Xinjiang.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3