Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities

Author:

Katra Itzhak

Abstract

Many soils throughout the world are currently associated with soil erosion by wind and dust emissions. Dust emission processes have major implications for loss of soil resources (such as clays and nutrients) and human exposure to air pollution. This work provides a review on field experiments of dust emission based on previous studies, with new insight into the role of soil aggregation. The work focuses on dust processes in semi-arid soils that are subjected to increased agricultural land use. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in soil plots representing long-term and short-term influences of land uses such as agriculture, grazing, and natural preserves. The results show the impacts of soil disturbances by human activities on the soil aggregation and dust fluxes and provide quantitative estimates of soil loss over time. Substantial loss of PM10 (particulate matter [PM] that is less than 10 micrometers in diameter) was recorded in most experimental conditions. The measured PM10 fluxes highlight the significant implications for soil nutrient resources in annual balance and management strategies, as well as for PM loading to the atmosphere and the risk of air pollution.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3