Diagnosis of Warm-Sector Heavy Rainfall with Warm Shear in the Yangtze–Huaihe Coastal Areas from the Perspective of Moist Static Energy

Author:

Yu Yiping1ORCID,Zhang Ling1

Affiliation:

1. Key Laboratory of Meteorology Disaster (Ministry of Education (KLME))/Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Based on the Climate Precipitation Center Morphing (CMORPH) precipitation data and the fifth-generation ECMWF reanalysis (ERA5) data, moist static energy (MSE) diagnosis for 14 cases of southerly warm-sector heavy rainfall with warm shear (WSWR) along the Yangtze-Huaihe coastal area (YHCA) was conducted. The results indicate that the vertically integrated MSE tendency peaks before the precipitation reaches its maximum. This suggests a rapid MSE accumulation leading up to precipitation onset, with moist enthalpy advection dominantly influencing this increase. The vertical advection of MSE is negative, suggesting that upward motions and rainfall play a crucial role in consuming MSE. Vertical integrated MSE budget analysis for the nine cases of nocturnal rain shows that moist enthalpy advection was the primary contributor, driven mainly by meridional latent energy advection. Scale analysis shows that the combination of meridional disturbance wind and the mean specific humidity field results in pronounced meridional latent energy advection. For the five cases of non-nocturnal rain, the net energy flux was dominant before the onset of precipitation, primarily driven by clear-sky net shortwave radiation (SWCS). The meridional internal energy advection also makes a substantial contribution. The scale analysis indicates that the combined effects of the meridional disturbance wind and the average temperature field lead to significant meridional internal energy advection.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3