Study on Spatial and Temporal Distribution Characteristics of the Cooking Oil Fume Particulate and Carbon Dioxide Based on CFD and Experimental Analyses

Author:

Ding Minting1,Zhang Shunyu1,Wang Jiahua23,Ye Feng23,Chen Zhenlei13

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315000, China

2. Fotile Group Ningbo Fotile Kitchenware Co., Ltd., Ningbo 315336, China

3. Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo 315204, China

Abstract

The cooking oil fume particulate (COFP) produced by indoor cooking can harm human health seriously, and therefore requires urgent monitoring and optimization. In this paper, the kitchen cooking simulation process was established by using computational fluid dynamics (CFD) based on the fluid dynamics theory. Combined with the user defined function (UDF), the spatial and temporal distributions of COFP and carbon dioxide (CO2) during the cooking process were simulated and analyzed, respectively. Both simulation results were verified using experimental data. Moreover, this paper introduces a COFP concentration correlation function that utilizes the spatiotemporal correlation between COFP and CO2 concentrations during the cooking process. The function is based on the spatiotemporal distribution of CO2 concentration. By comparing it with traditional calculations, the proposed function is shown to achieve a remarkable 70% improvement in efficiency and maintain an accuracy rate exceeding 90%. This enables the rapid analysis and control of COFP concentration through monitoring and analyzing CO2 levels in the kitchen.

Funder

Zhejiang Province Public Welfare Technology Application Research Project

Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province and 2025 Major Programs on Science Technology Innovation of Ningbo

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3