Application of Portable CH4 Detector Based on TDLAS Technology in Natural Gas Purification Plant

Author:

Liu Yi1,Shang Qianqian2,Chen Lang2,Wang Erxiao1,Huang Xinyu1,Pang Xiaobing2,Lu Youhao2,Zhou Lei2,Zhou Jue2,Wang Zhiwen2,Lyu Yan2

Affiliation:

1. Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China

2. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

Methane (CH4) is the main pollutant in oil and gas production. The detection and accounting of CH4 is an important issue in the process of greenhouse gas control and emission reduction in oil and gas industry. In this study, a portable CH4 detector based on tunable diode laser absorption spectroscopy (TDLAS) technology was deployed. The three-dimensional distribution of CH4 in a natural gas purification plant in Sichuan was obtained through vertical unmanned aerial vehicle (UAV) flight observations and ground mobile observations. According to the mass balance method, the emission of CH4 on 30 m above ground level (AGL) and 60 m AGL in this site was about 0.012 kg/s (±42% at 1σ) and 0.034 kg/s (±47% at 1σ), respectively, in one day. The vertical distribution showed that the CH4 concentration reached the maximum (2.75 ± 0.19 ppm) with height of 0 to 100 m AGL. The CH4 concentration from 100 to 300 m AGL showed a downward trend with height. Atmospheric instability at high altitude and high wind speed promoted the diffusion of CH4. The CH4 concentrations of horizontal distribution on 30 m AGL and 60 m AGL were 2.48 ± 0.11 ppm and 2.76 ± 0.34 ppm. In the observation of mobile campaigns, the connecting equipment of natural gas treatment facilities was prone to leakage, such as in valves and flanges. CH4 leakage was also detected at the torch mouth, especially when there was an open flame at the torch mouth. During the mobile movement investigation, the downwind measurement (OTM-33A) was applied to determine the overall CH4 emission rate shortly after patrolling the site. This work plays a vital role in optimizing the operation and maintenance of natural gas production stations pipe network, ensuring human safety and minimizing greenhouse gas emissions.

Funder

National Natural Science Foundation of China

Chongqing Technological Innovation and Application Development Special Key Project

Zhejiang Province Lingyan Research and Development Project

Shaoxing Science and Technology Plan Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3