Study on the Optical–Physical Properties of Aerosol Layers in Africa Based on a Laser Satellite

Author:

Zhang Miao123ORCID,Mu Pengyu1,Chen Xin1,Wu Di1,Lu Fengxian1,Qi Pengcheng1,Li Larry Bailian45,Gong Wei6

Affiliation:

1. Academy of Remote Sensing Technology and Application, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

2. Key Laboratory of Natural Disaster and Remote Sensing of Henan Province, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

3. Engineering Research Center of Environmental Laser Remote Sensing Technology and Application of Henan Province, Nanyang Normal University, Wolong Road No. 1638, Nanyang 473061, China

4. International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China

5. Ecological Complexity and Modelling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA

6. School of Electronic Information, Wuhan University, Wuhan 430072, China

Abstract

Atmospheric aerosols have important effects on the environment and human health. In this study, we analyzed the atmospheric aerosol layers’ optical and physical properties over Africa utilizing CALIPSO level 2 products from 2007 to 2019. Interannual and seasonal variations in aerosol optical parameters were studied: the lowest aerosol layer (AODL), the base height of the lowest aerosol layer (BL), the top height of the lowest aerosol layer (HL), the top height of the highest aerosol layer (HH), the volumetric depolarization ratio of the lowest aerosol layer (DRL), the color ratio of the lowest aerosol layer (CRL), the total AOD of all aerosol layers (AODT), the number of aerosol feature layers (N), the thickness of the lowest aerosol layer (TL), and the AOD proportion of the lowest aerosol layer (PAODL). The annual mean AODT was slightly higher in southern Africa than in northern Africa. HL and HH had strongly positive correlations with landform elevations. However, HL and HH were greater in northern Africa than in southern Africa from March to August. The reason could be that northern Africa is dominated by deserts with high temperatures and intense atmospheric vertical convections leading to dust layers existing in the upper air. PAODL values were lower in northern Africa (daytime: 71%; nighttime: 61%) than in southern Africa (daytime: 78%; nighttime: 69%), revealing that aerosol stratifications were more frequent in northern Africa than in southern Africa. DRL values were higher in northern Africa (daytime: 0.16; nighttime: 0.11) than in southern Africa (daytime: 0.07; nighttime: 0.05) indicating the predominance of non-spherical dust particles in northern Africa. This work can provide an important understanding of regional aerosol layers’ optical and physical properties to scientists and local environmental protection agencies.

Funder

the support program of Henan provincial colleges and universities scientific and technological innovation talent

the Programs for Science and Technology Development of Henan Province

the Nanyang Normal University Scientific Research Project

the Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Middle Route of South-to-North Water Diversion

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3