Degradation of Dental Methacrylate-Based Composites in Simulated Clinical Immersion Media

Author:

Ilie NicoletaORCID

Abstract

The selection of restorative materials with regard to the longevity and durability of a restoration is of crucial importance for daily dental practice and requires that the degradation of the material in the oral environment can be assessed. The aim of this study was to investigate the extent to which the mechanical properties of four (Esthet X, Ceram X, Filtek Supreme XT, and Filtek Supreme XT flow) resin-based composites (RBCs) alter during storage in saliva substitutes (artificial saliva) for 24 h and 28 days and in the context of simulated, more aggressive clinical conditions, including cycles exposure to de- and remineralization, alcohol, or salivary enzymes. For this purpose, flexural strength and modulus were determined in a three-point bending test (n = 20) followed by Weibull analysis, while quasi-static behavior was evaluated by instrumented indentation techniques. Degradation occurred in all RBCs and all aging protocols and was quantifiable at both macroscopic and microscopic levels. The postulated stabilizing effect on degradation through the incorporation of urethane-based co-monomers into the organic matrix or a higher filler loading is refuted. Even though modern RBCs show high clinical survival rates, biodegradation remains an issue that needs to be addressed.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3