Adaptive Gaussian Mixture Model for Uncertainty Propagation Using Virtual Sample Generation

Author:

Xu Tianlai1,Zhang Zhe23,Han Hongwei4

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. Department of Mathematics and Theories, Peng Cheng Laboratory, No. 2, Xingke 1st Street, Nanshan, Shenzhen 518000, China

3. Deep Space Exploration Labortory, Beijing 100089, China

4. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Orbit uncertainty propagation plays an important role in the analysis of a space mission. The accuracy and computation expense are two critical essences of uncertainty propagation. Repeated evaluations of the objective model are required to improve the preciseness of prediction, especially for long-term propagation. To balance the computational complexity and accuracy, an adaptive Gaussian mixture model using virtual sample generation (AGMM-VSG) is proposed. First, an unscented transformation and Cubature rule (UT-CR) based splitting method is employed to adaptive update the weights of Gaussian components for nonlinear dynamics. The Gaussian mixture model (GMM) approximation is applied to better approximate the original probability density function. Second, instead of the pure expensive evaluations by conventional GMM methods, virtual samples are generated using a new active-sampling-based Kriging (AS-KRG) method to improve the propagation efficiency. Three cases of uncertain orbital dynamical systems are used to verify the accuracy and efficiency of the proposed manuscript. The likelihood agreement measure (LAM) criterion and the number of expense evaluations prove the performance.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3