Orbital Uncertainty Propagation Based on Adaptive Gaussian Mixture Model under Generalized Equinoctial Orbital Elements

Author:

Xie Hui123ORCID,Xue Tianru12,Xu Wenjun13,Liu Gaorui13,Sun Haibin13,Sun Shengli123

Affiliation:

1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China

Abstract

The number of resident space objects (RSOs) has been steadily increasing over time, posing significant risks to the safe operation of on-orbit assets. The accurate prediction of potential collision events and implementation of effective and nonredundant avoidance maneuvers require the precise estimation of the orbit positions of objects of interest and propagation of their associated uncertainties. Previous research mainly focuses on striking a balance between accurate propagation and efficient computation. A recently proposed approach that integrates uncertainty propagation with different coordinate representations has the potential to achieve such a balance. This paper proposes combining the generalized equinoctial orbital elements (GEqOE) representation with an adaptive Gaussian mixture model (GMM) for uncertainty propagation. Specifically, we implement a reformulation for the orbital dynamics so that the underlying state and the moment feature of the GMM are propagated under the GEqOE coordinates. Starting from an initial Gaussian probability distribution function (PDF), the algorithm iteratively propagates the uncertainty distribution using a detection-splitting module. A differential entropy-based nonlinear detector and a splitting library are utilized to adjust the number of GMM components dynamically. Component splitting is triggered when a predefined threshold of differential entropy is violated, generating several GMM components. The final probability density function (PDF) is obtained by a weighted summation of the component distributions at the target time. Benefiting from the nonlinearity reduction caused by the GEqOE representation, the number of triggered events largely decreases, causing the necessary number of components to maintain uncertainty realism also to decrease, which enables the proposed approach to achieve good performance with much more efficiency. As demonstrated by the results of propagation in three scenarios with different degrees of complexity, compared with the Cartesian-based approach, the proposed approach achieves comparable accuracy to the Monte Carlo method while largely reducing the number of components generated during propagation. Our results confirm that a judicious choice of coordinate representation can significantly improve the performance of uncertainty propagation methods in terms of accuracy and computational efficiency.

Funder

Technology Innovation of Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3