Dynamic Characteristics of Urban Rail Train in Multivehicle Marshaling under Traction Conditions

Author:

Zhang Yichao1,Yang Jianwei1,Wang Jinhai1ORCID,Zhao Yue1

Affiliation:

1. Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

In recent years, urban rail transportation has rapidly developed in China and become one of the most important modes of travel. Most existing studies on the dynamic characteristics of urban rail trains have been based on single-section trains, and there have been fewer studies on marshaling urban rail trains that incorporate traction transmission systems. The dynamic performance of each carriage directly affects the operational reliability and even the running safety of urban rail trains. For this reason, in this paper, a marshaling urban rail train model with a traction transmission system was established and its accuracy was validated by field tests. This dynamics model enables the consideration of the coupling interactions between the gear transmission motion, the vertical, the lateral and the longitudinal motions of the vehicle. First, the model accuracy was validated by field tests. Then, the relationship between the motor torque and the running time of the urban rail train under traction conditions was calculated. Finally, the dynamic performance of each car of the marshaling train was studied. The research results show that there is a clear difference between the dynamics of the motor car and the trailer, and that the motor car is significantly inferior to the trailer. Among the four motor cars, the dynamic performances of the first and last moving cars were worse than those of the other motor cars. Among the two trailers, the trailer at the back was worse than the trailer at the front. The traction transmission system has a greater impact on the vertical and lateral vibration of the train bogie frame and wheelset, but the impact on the vibration of the car body is negligible. This paper provides theoretical support for the research one train dynamic performance optimization and operation safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3