Research on railroad locomotive driving safety assistance technology based on electromechanical coupling analysis

Author:

Li Jianlong1

Affiliation:

1. College of Locomotive and Rolling Stock, Zhengzhou Railway Vocational & Technical College , Zhengzhou , 450052 , China

Abstract

Abstract The reliability and effectiveness of a high-speed train’s operation depend heavily on the traction drive system. The purpose of this project was to construct an electromechanical connection model for a bullet train. The model contains the gear-to-gear connection, the differential output of the transmission, which circuits similar to those found in motors, and indirect power management. The purpose of this research is to investigate how modern railroad systems have implemented locomotive driving safety assistance technologies in order to get a deeper understanding of the effects that technological progress has on train operators. The purpose of this study is to learn how technological developments have altered the job of train operators. We will investigate the feasibility, compatibility, and potential consequences of introducing innovative technologies into established workflows. We will look at how well it works with current technologies, too. The current investigation has the authority to look at these issues. The ultimate goal of this project is to improve railway operations by providing essential insights for guaranteeing a balance between technological progress and human skill. The ultimate purpose of the project is to enhance the efficiency and security of railway operations. This may be achieved by strengthening the effectiveness and security of railway operations. In addition, the high-speed train model is simulated numerically to maintain that steady rate of travel, and grip, while slowing. The study determined that the stator current is the result of the interaction between the fundamental frequency and the higher harmonics of the rotational frequency. Furthermore, both frequencies can be detected even when traveling at a constant speed. Despite this, unless the rotation frequency is increased, they are often not visible. During traction, the root-mean-square (RMS) values of the rotor and stator currents are lower than that during braking. There is a significant rise in current when the wheels and brakes are first applied. The RMS value of the current lowers dramatically as grip and braking improve. As a result, it is essential to carefully consider how the change may influence the reliability of the system.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3