Smart Tool Wear Monitoring of CFRP/CFRP Stack Drilling Using Autoencoders and Memory-Based Neural Networks

Author:

Caggiano Alessandra12ORCID,Mattera Giulio3ORCID,Nele Luigi3

Affiliation:

1. Center for Advanced Metrological and Technological Services (CESMA), University of Naples Federico II, Corso Nicolangelo Protopisani 70, 80146 Naples, Italy

2. Fraunhofer Joint Laboratory of Excellence on Advanced Production Technology (Fh J_LEAPT UniNaples), Piazzale Tecchio 80, 80125 Naples, Italy

3. Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy

Abstract

The drilling of carbon fiber-reinforced plastic (CFRP) materials is a key process in the aerospace industry, where ensuring high product quality is a critical issue. Low-quality of final products may be caused by the occurrence of drilling-induced defects such as delamination, which can be highly affected by the tool conditions. The abrasive carbon fibers generally produce very fast tool wear with negative effects on the hole quality. This suggests the need to develop a method able to accurately monitor the tool wear development during the drilling process in order to set up optimal tool management strategies. Nowadays, different types of sensors can be employed to acquire relevant signals associated with process variables which are useful to monitor tool wear during drilling. Moreover, the increasing computational capacity of modern computers allows the successful development of procedures based on Artificial Intelligence (AI) techniques for signal processing and decision making aimed at online tool condition monitoring. In this work, an advanced tool condition monitoring method based on the employment of autoencoders and gated recurrent unit (GRU) recurrent neural networks (RNN) is developed and implemented to estimate tool wear in the drilling of CFRP/CFRP stacks. This method exploits the automatic feature extraction capability of autoencoders to obtain relevant features from the sensor signals acquired by a multiple sensor system during the drilling process and the memory abilities of GRU to estimate tool wear based on the extracted sensor signal features. The results obtained with the proposed method are compared with other neural network approaches, such as traditional feedforward neural networks, and considerations are made on the influence that memory-based hyperparameters have on tool wear estimation performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3