Affiliation:
1. Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract
Hybrid electric air-ground vehicles (HEAGVs), which can run on the land and fly in the air, are considered a promising future transportation. The operation of HEAGVs, accompanied by high energy consumption, could lead to increasing battery temperature, which may affect the lifespan of the battery. To make the battery last longer and improve energy efficiency, an effective energy management strategy (EMS) is necessary for the operation of HEAGVs. In this regard, this paper proposes a predictive EMS based on model predictive control (MPC). Firstly, speed information is obtained by intelligent network technology to achieve a prediction of power demand, and then the state of charge (SOC) reference trajectory is planned. Secondly, a Pontryagin’s minimum principle-based model predictive control (PMP-MPC) framework is proposed, including battery thermal dynamics. Under the framework, fuel efficiency is improved by reducing the temperature of the battery. Finally, the proposed method is compared to PMP, dynamic programming (DP), and rule-based (RB) methods. The effect of different preview horizon sizes on fuel economy and battery temperature is analyzed. Verification results under two driving cycles indicate that compared with the rule-based method, the proposed method improves fuel economy by 5.14% and 5.2% and decreases the temperature by 5.9% and 4.9%, respectively. The results demonstrate that the proposed PMP-MPC method can effectively improve fuel economy and reduce temperature.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献