Effect of Three-Dimensional (3D) Scanning Factors on Minimizing the Scanning Errors Using a White LED Light 3D Scanner

Author:

Raza Syed Farhan1ORCID,Amjad Muhammad2ORCID,Ishfaq Kashif1,Ahmad Shafiq3ORCID,Abdollahian Mali4

Affiliation:

1. Department of Industrial and Manufacturing Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

2. Department of Mechanical, Mechatronics and Manufacturing Engineering, New Campus, University of Engineering and Technology, Lahore 54890, Pakistan

3. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

4. School of Science, College of Sciences, Technology, Engineering, Mathematics, RMIT University, P.O. Box 2476, Melbourne, VIC 3001, Australia

Abstract

The largest problem with scanning real objects involves bearing the huge costs of scanning and the low quality of point cloud data for a scanned object, thereby increasing the cost and lead time. Therefore, a need exists to improve the quality of scanning to save time, costs, and computational resources. In this research, the levels of optimal factors associated with a three-dimensional (3D) scanner were investigated, improving the quality of 3D scanning data. Optimizing the 3D scanner factors could help us acquire errorless digital scanned data that accurately resemble a 3D physical object and which may be further used in various engineering applications, e.g., additive manufacturing and non-engineering applications. For this study, four modes of 3D scanning (A, B, C, and D) were utilized with five crucial 3D scanning factors namely texture, watertightness, simplification, and alternate deployments of smoothness and sharpness. This research was divided into two stages. The former stage involved the 3D scanning of two samples with simple and complex geometrical intricacies and the later stage involved checking the scanned objects for any dimensional errors. A coordinate measuring machine (CMM) was used to measure the dimensional details of the real objects. For virtual metering, Solidworks was utilized. With reference to the limited literature in the current context, 3D scanning errors were highly reduced for the first time up to 0.1% for the complex sample when compared to the errors found for the simple sample.

Funder

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3