Broken engine’s crankshaft misalignment inspection by using reverse engineering technique

Author:

Khuanlieng W.1,Chuvaree S.1,Janmanee P.1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand

Abstract

The research aims to study the measuring data comparison between the broken crankshaft and the new crankshaft. The broken crankshaft has been investigated whether to measure dimensions or misalignment value. Therefore, the new crankshaft was measured and compared with a broken crankshaft using a 3D laser scanner. The misalignment value has been related to the overlapping value of a broken crankshaft by using a 3D software application.The broken crankshaft has been compared with the new crankshaft in contemporary models. The broken crankshaft was produced and assembled from an automobile manufacturer’s factory. It belonged to a particular Diesel engine that fractured while running in normal driving conditions. The broken crankshaft dimension has been investigated to find out the worn-out and misalignment value. The broken crankshaft inspection was measured using a micrometre and a 3D laser scanner application. Both crankshafts were created as artefact 3D models by the 3D laser scanner of the HandySCAN700 model. The accuracy of the 3D laser scanner will be presented in terms of measuring error. Two crankshafts were combined in concentric mate function. The inspection points were carried out at 4 points of each 90 around the main journal diameter, by following the guidelines of crankshaft inspection on a workshop manual basis. The overlapping value of each main journal will be measured by a 3D compare function at 0, 90, 180 and 270 respectively.The results showed the average diameter of the broken crankshaft’s main journal was less than the limit value. A new crankshaft was judged to be needed to be replaced. Moreover, it showed the lowest diameter of main journal No. 2 was 69.890 mm. It carried a 0.06% excessive worn-out value. The measuring error value of the 3D laser scanner was found and required for user-performed calibration procedures. The highest overlapping value was higher than the standard tolerance, up to 117%. It was located at the main journal No. 3 at 180 and near the fractured point of the broken crankshaft.The study of the broken crankshaft inspection was limited to either under-warranty or over-warranty cases. Most of the technicians in authorised automobile dealerships had no intention of performing the inspection process completely. In addition, they were lack of measuring skills and data records. Moreover, automotive manufacturers cannot support the 3D dimension data because it may affect the business’s confidential data leakage.The workshop manual mentioned the crankshaft inspection as a basic tool. In the case of complex components, automotive manufacturers should consider the utilisation of non-contact measuring tools for inspection reference.A reverse engineering technique was applied to scan the broken crankshaft into a 3D model using 3D laser scanning technology, which is used to reduce the measuring time and measuring value error in the inspection process.

Publisher

Index Copernicus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3