Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach

Author:

Kariri Elham1,Louati Hassen2,Louati Ali1,Masmoudi Fatma1

Affiliation:

1. Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. SMART Lab, Higher Institute of Management, University of Tunis, Tunis 3000, Tunisia

Abstract

Artificial Neural Networks (ANNs) are machine learning algorithms inspired by the structure and function of the human brain. Their popularity has increased in recent years due to their ability to learn and improve through experience, making them suitable for a wide range of applications. ANNs are often used as part of deep learning, which enables them to learn, transfer knowledge, make predictions, and take action. This paper aims to provide a comprehensive understanding of ANNs and explore potential directions for future research. To achieve this, the paper analyzes 10,661 articles and 35,973 keywords from various journals using a text-mining approach. The results of the analysis show that there is a high level of interest in topics related to machine learning, deep learning, and ANNs and that research in this field is increasingly focusing on areas such as optimization techniques, feature extraction and selection, and clustering. The study presented in this paper is motivated by the need for a framework to guide the continued study and development of ANNs. By providing insights into the current state of research on ANNs, this paper aims to promote a deeper understanding of ANNs and to facilitate the development of new techniques and applications for ANNs in the future.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Educational Research;Artificial Intelligence;2024-05-02

2. Advanced Anomaly Detection in Manufacturing Processes: Leveraging Feature Value Analysis for Normalizing Anomalous Data;Electronics;2024-04-05

3. Adaptive Stochastic Conjugate Gradient Optimization for Backpropagation Neural Networks;IEEE Access;2024

4. Text Mining for Advanced Information Analysis and Decision Making;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

5. An Exploration of the Effectiveness of Machine Learning Algorithms for Text Classification;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3