Artificial Intelligence in Educational Research

Author:

Alejandro Duarte Velazquez Ulises

Abstract

The proliferation of textual data in academic literature necessitates accelerating qualitative research methodologies. Text mining, underpinned by artificial intelligence and natural language processing, emerges as a transformative solution. This study analyzes how AI-integrated qualitative data analysis software such as ATLAS.ti and MAXQDA have streamlined processes like automatic coding and summarization since early 2023. These tools now facilitate rapid preliminary reviews through summarization features and obviate programming expertise through intuitive interfaces. Key advantages include drastic reductions in manual coding time through AI coding, enrichment of inductive coding systems via semantic analysis-based sub-code suggestions, and insights-driving code commenting summaries. Deep learning models unlocked by such tools will enable discernment of increasingly intricate patterns, improving educational interventions through real-time strategies informed by empirical findings. However, responsible use requires human oversight to refine coding and interpret nuanced results. While propelling qualitative research to unprecedented scales and depths, text mining also poses challenges around potential oversight neglect and lack of ethical guidelines. Optimizing these tools ensures accurate, responsible analyses that revolutionize understanding complex educational processes. AI ultimately enhances social science and education research outcomes through large-scale textual data analysis.

Publisher

IntechOpen

Reference30 articles.

1. Anawis M. Text mining: The next data frontier. Research & Development World. 2014. Available from: https://www.rdworldonline.com/text-mining-the-next-data-frontier/

2. Latard B, Weber J, Forestier G, Hassenforder M. Towards a semantic search engine for scientific articles. Research and Advanced Technology for Digital Libraries. In: 21st International Conference on Theory and Practice of Digital Libraries, TPDL 2017, Thessaloniki, Greece, September 18-21, 2017, Proceedings. Vol. 10450. 2017. pp. 608-611. DOI: 10.1007/978-3-319-67008-9_54

3. Mysore S, Jasim M, Song H, Akbar S, Randall AKC, Mahyar N. How data scientists review the scholarly literature. In: Gwizdka J, Rieh SY, editors. CHIIR ‘23 Proceedings of the 2023 Conference on Human Information Interaction and Retrieval. 2023. pp. 137-152. DOI: 10.1145/3576840. ISBN: 9798400700354

4. Stein-Sparvieri E. Text mining e inferencia de defensas en el análisis del discurso en psicología. Subjetividad y Procesos Cognitivos. 2010;14(2):304-313

5. Zanini N, Dhawan V. Text Mining: An Introduction to Theory and some Applications. Research Matters: A Cambridge Assessment Publication; 2015;19:38-44. Available from: https://www.cambridgeassessment.org.uk/Images/466185-text-mining-an-introduction-to-theory-and-some-applications-.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3