Production and Purification of Soy Leghemoglobin from Pichia pastoris Cultivated in Different Expression Media

Author:

Bolmanis Emils1ORCID,Bogans Janis1,Akopjana Inara1,Suleiko Arturs2ORCID,Kazaka Tatjana1ORCID,Kazaks Andris1ORCID

Affiliation:

1. Latvian Biomedical Research and Study Centre, Ratsupites Street 1 k1, LV-1067 Riga, Latvia

2. Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia

Abstract

Plant-based meat alternatives, exemplified by Impossible Foods’ Impossible Burger, offer a sustainable, ethical substitute for traditional meat, closely mimicking the taste and appearance of meat by utilizing soy leghemoglobin (LegH), a 16 kDa holoprotein found in soy plants structurally similar to heme in animal meat. Cultivation medium plays an important role in bioprocess development; however, medium development or optimization can be labor intensive, and thus the use of previously reported media can be enticing. In this study, we explored the expression of recombinant LegH in Pichia pastoris in various reported cultivation media (BSM, BMGY, FM22, D’Anjou, BSM/2, and RDM) and using different feeding approaches (µ-stat and mixed feed with sorbitol). Our findings indicate that optimization techniques tailored to the specific process did not increase LegH yields, highlighting the need to investigate strain-specific strategies. We also utilized the collected process data to create and train a novel artificial neural network-based soft sensor for estimating cell biomass, relying solely on standard bioreactor measurements (such as stirrer speed, dissolved oxygen, O2 enrichment, base feed, glycerol feed, methanol feed, and reactor volume). This soft sensor proved to be robust and exhibited a strong correlation (3.72% WCW) with experimental data.

Funder

European Regional Development Fund

European Social Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3