A Comparative Case Study on Stress Redistribution due to Extraction of Conventional and Split-Level Longwall Panels in Deep Inclined Coal Seams

Author:

Wang Pengfei1,Zhao Peng2,Cao Yang3

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Ordos Wulan Coal (Group) Co., Ltd., Ordos 017200, China

3. Ma Jiliang Mine, Datong Coal Mine Group Co., Ltd., Datong 034099, China

Abstract

Through field observations, theoretical analysis, and a calibrated numerical model, a study of stress redistribution due to the extraction of longwall panels at depths ranging from 580 to 660 m with a 30° dip angle at Tangshan coal mine is presented in this paper. Conventional and new split-level longwall layouts are compared regarding their stress redistributions. The height of the caved zone is 21.7 m; angles of break of 55.6° on the left and 54.2° on the right side of the gob are observed using cross-measure boreholes. Structural models as well as numerical models are constructed based on the above field data to make the geometry of the gobs closer to the in situ situation and more realistic. Compared with the conventional layout, the theoretical analysis shows that the overall influence of the elevated split-level longwall gob on the lowest intact stratum increases by more than 5.07%, meaning that the split-level longwall layout is more likely to maintain the stability of the overlying strata. This is also corroborated by numerical modeling. Conventional longwall panels and split-level longwall panels with and without considering the gob are all simulated using FLAC3D. Instead of only backfilling the height of the coal seam or the height of the coal seam and the immediate roof, as in many numerical modeling studies in the past, in this study, the whole caved zone is backfilled with “double-yield” material. It is found that along the floor, the split-level longwall gob assumes 23.4% more load than the conventional longwall gob, and the split-level longwall abutment bears 6.2% less load than the conventional longwall abutment; stress arches are developed within the gob; concave-down stress beddings are more evident at higher locations of the gob; a self-supporting structure develops within the gob and surrounding rock mass around the lower end of the gob, forming a protective localized intact destressed zone around the location where the split-level tailgate is situated; the yield zone in the floor of the curved section tends to extends toward the center of the curved part, where the curvature is the maximum; the upper stress concentration zone is within the coal seam, while the lower one is above the coal seam; the upper one is more concentrated.

Funder

National Natural Science Foundation of China, General Program Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3