Characterization of Overburden Deformation and Subsidence Behavior in a Kilometer Deep Longwall Mine

Author:

Khanal Manoj,Qu Qingdong,Zhu Yiran,Xie JianlinORCID,Zhu Weibing,Hou Tao,Song Shikang

Abstract

A thorough understanding of mining-induced overburden deformation characteristics and the associated stress redistributions are essential to effectively manage complex safety and environmental issues that arise from underground mining. This is particular for mining in deep environments. This paper presents a numerical modelling study on a kilometer-deep longwall coal mine where a thick sandstone aquifer is situated approximately 200 m above the working seam. The mine adopts a special mine layout with narrow and wide pillars between longwalls and areas to manage water inrush and coal burst risks. The modelling results show that overburden deformation stops at a certain height, above which the displacement profile over multiple longwall panels become nearly flat. Increasing panel width and extraction height lead to a greater extent of the fractured zone and a larger magnitude of surface subsidence. An extraction height of more than 7 m may breach the thick aquifer. Stress concentration on the wide pillar can undergo up to 5 times increase in the in-situ stress, posing high risks of coal burst. Adjusting mining parameters such as panel width and extraction height can facilitate an effective strategy to minimize water inrush and coal burst risks in such a mining condition.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3