Affiliation:
1. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract
This study examines the mechanical performance, deformability properties and rheological properties of a newly developed waterborne epoxy resin (WER)-modified emulsified asphalt (WE/A) binder for micro-surfacing. Two types of WER, semi-flexible and rigid, were used to modify the binder. Furthermore, the modification mechanism was investigated using the fluorescent microscope test and the scanning electron microscope (SEM). In addition, the pavement performance at micro-surfacing was studied using the wet wheel wear resistance test, the pendulum friction test and the slurry rutting test. The results indicated that with a small content (<15%) of WER in WE/A, WER existed as a continuous structure (cellular membrane wrapped around asphalt bubbles), thereby enhancing its high temperature properties and mechanical properties. Meanwhile, it also improved the cohesion properties of the transition interface between the aggregate and asphalt (enhanced by at least 30.0%) and the rutting resistance (improved by about 55.3–63.8%). In addition, WER could also improve the peeling resistance and water damage resistance of the micro-surfacing.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献