Numerical Simulation and Structural Optimization of Swirl Flow Micro-Nano Bubble Generator

Author:

Hu Xinkang1,Zhang Bo23,Wu Chundu1,Xu Xiaohong2,Xue Mingming2,Zheng Xiaoyong4

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212000, China

2. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212000, China

3. Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou 213164, China

4. Jiangsu Huanchuan Environmental Engineering Co., Ltd., Taizhou 225300, China

Abstract

The development of the bubble generator that can efficiently generate micro-nano bubbles has always been recognized as a challenge. Swirling flow is considered to be an efficient method to enhance hydrodynamic cavitation. The vortex supply chamber and the variable-diameter accelerated vortex cavitation reaction chamber were combined to obtain a stable high-speed tangential liquid flow and improve the cavitation effect inside the generator in this study. The central air intake column was innovatively installed above the cavitation reaction chamber, which prolonged the shear fracture time of bubbles under high shear force and improved the gas–liquid contact and mixing efficiency. The influence of geometric parameters on the internal and external flow fields of the generator was analyzed through the numerical simulation. The optimized central air intake column was located 10 mm above the inlet of the cavitation reaction chamber. The optimized variable diameter contraction angle was 16°, and the optimized generator outlet diameter was 15 mm. Through the bubble performance test, it was verified that the micro-nano bubbles with the minimum size and average size of 0.31 μm and 3.42 μm could be generated by the manufactured generator. The enforcement of the research provided theoretical guidance and data support for the development of efficient micro-nano bubble generators.

Funder

Jiangsu Water Conservancy Science and Technology Project

Changzhou Sci&Tech Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3