Characterization of Structure, Morphology, Optical and Electrical Properties of AlN–Al–V Multilayer Thin Films Fabricated by Reactive DC Magnetron Sputtering

Author:

Mironova Maria I.ORCID,Kapishnikov Aleksandr V.,Hamoud Ghaithaa A.,Volodin Vladimir A.ORCID,Azarov Ivan A.,Yushkov Ivan D.ORCID,Kamaev Gennadiy N.ORCID,Suprun Evgeny A.,Chirikov Nikita A.,Davletkildeev Nadim A.,Baidakov Alexey N.ORCID,Kovivchak Vladimir S.,Baranova Larisa V.,Strunin Vladimir I.,Geydt Pavel V.ORCID

Abstract

Composite thin films of the AlN–Al–V type, grown by magnetron sputtering, were analyzed by several complementary diagnostic methods. The power of the magnetron was used as a variable parameter, while gas flows, chamber pressure, and substrate temperature remained unchanged during the film fabrication. According to grazing incidence X-ray diffraction (GIXRD) results, in most cases, it was possible to obtain an (002)-oriented aluminum nitride (AlN) layer in the films, although, with an increase in the magnetron power to 800 W, the formation of X-ray amorphous AlN was observed. Similarly, according to the Raman results, the width of the peak of the vibrational mode E1, which characterizes the correlation length of optical phonons, also significantly increased in the case of the sample obtained at 800 W, which may indicate a deterioration in the crystallinity of the film. A study of the surface morphology by atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the AlN film grows in the form of vertically oriented hexagons, and crystallites emerge on the surface in the form of dendritic structures. During the analysis of the AFM roughness power spectral density (PSD-x) functions, it was found that the type of substrate material does not significantly affect the surface roughness of the AlN films. According to the energy–dispersive X-ray spectroscopy (SEM-EDS) elemental analysis, an excess of aluminum was observed in all fabricated samples. The study of the current-voltage characteristics of the films showed that the resistance of aluminum nitride layers in such composites correlates with both the aluminum content and the structural imperfection of crystallites.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3