Effect of Hexagonal Phase Content on Wear Behaviour of AlTiN Arc PVD Coatings

Author:

Kohlscheen Joern,Bareiss Christian

Abstract

In this study, the effect of increasing aluminum content and magnetic steering field strength on the structure and wear behavior of arc PVD AlTiN coatings is discussed. Deposition was done by means of an industrial-scale PVD unit for tool coating. The aluminium content in the AlTi source material was increased from 67 to 73 at.%. We applied two settings of the magnetic field that steers the arc across the cathode surface thereby evaporating the AlTi alloy differently. The resulting coating thickness ranged from 3.5 to about 7 µm. Cemented tungsten carbide was used as substrate material. Coating properties like hardness, adhesion, and crystal phases were analyzed by indentation and X-ray diffraction, respectively. The wear behaviour of the different AlTiN hard coatings were investigated in two ways. In a first idealized test, cyclic impacting was done applying a constant force. The resulting wear pattern was quantified by an Alicona multi-focus microscope. A second wear test was done by metal cutting under realistic conditions. Fly milling of ductile cast iron (EN-GJS-700) was performed with regular interruptions in order to measure the increasing wear mark. As expected, aluminium contents above 67 at.% (in the metal fraction of the coating) lead to a decreased wear resistance as the soft hexagonal phase exceeds values of a few vol.%. However, it was found that the formation of the hexagonal phase can be effectively influenced and delayed by increasing the magnetic steering field at the cathode. The wear behavior observed in cyclic impact testing corresponds well to results obtained with the more complex loading situation encountered in milling.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3