Microstructure and Properties of Monolayer Ta and Multilayer Ta/Ti/Zr/Ta Coatings Deposited on Biomedical Ti-6Al-4V Alloy by Magnetron Sputtering

Author:

Zhao Suli12,Liu Shuguang3ORCID,Xue Yongjie3,Li Ning1,Xu Kuixue1,Qiu Weiwei3,Li Xuexian3,Wang Jinbo1,Wu Qian1,Shi Chunbao1

Affiliation:

1. Beijing Chunlizhengda Medical Instruments Co., Ltd., Beijing 101112, China

2. Medical School of Nanjing University, Nanjing University, Nanjing 210093, China

3. Engineering Research Center for Electrophysical Apparatus and Application Technology, Beijing Research Institute of Automation for Machinery Industry Co., Ltd., Beijing 100120, China

Abstract

Two types of coatings, i.e., monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings, were deposited on biomedical Ti6Al4V (TC4) alloy by magnetron sputtering to improve its performance. To evaluate the effect of the two coatings on the alloy properties, the microstructure, composition, mechanical and tribological properties, in vitro biocompatibility, and corrosion resistance were investigated. The results showed that α-Ta exists in the monolayer Ta coating, while α-Ta and β-Ta phases coexist in the multilayer Ta/Ti/Zr/Ta coating. The multilayer Ta/Ti/Zr/Ta coating possessed the highest hardness and the monolayer Ta coating had the lowest friction coefficient compared to the Ti6Al4V alloy. The friction and wear tests revealed that the anti-wear performance of the Ta coating is the best, followed by that of the Ta/Ti/Zr/Ta coating, while the anti-wear performance of TC4 alloy is relatively poor in comparison with the Ta and Ta/Ti/Zr/Ta coatings. The wear resistance of the multilayer Ta/Ti/Zr/Ta coating under low normal load is better than that under high load normal load. Finally, the in vitro and electrochemical corrosion tests showed that the Ta coating modification provides better biocompatibility and corrosion resistance than those of the uncoated Ti6Al4V alloy.

Funder

Beijing Postdoctoral Research Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3