Response of preosteoblasts on micromachined Ti-6Al-4V surface to microstructure dimension

Author:

Chen ZhaojieORCID,Yang Linfeng,Xie JinORCID,Zhu Xicong

Abstract

Abstract The cell incubation depends on the cultured surface, but various machining methods produce different surface topographies, but it has not been clear how it is related to the topographic feature until now. Hence, the machined Ti-6Al-4V surface is characterized for preosteoblasts incubation via different mechanical fabrication. The relationship between surface topography created by various machining methods and cell incubation behaviour was explored. The objective is to control the surface preosteoblasts growth in machining of biological titanium alloy. According to the cell growth kinetic, the cell incubation behaviour was first proposed and modelled in relation to microstructural dimension and culture duration. Then, the topological cultured microstructure surface was fabricated via mechanical fabrication. Finally, the cell initial adhesion and incubation behaviour on microstructured surface was investigated. It is shown that the surface undulation on machined microstructure is conducive to controlling the direction and distribution of cell incubation from cell growth kinetic model. The cell culture can be controlled on the peak with a small undulation, while it is concentred on the sidewall with a high aspect ratio. Increasing the aspect ratio extends cell growth, while low aspect ratio promotes initial cell adhesion and growth rate. Within the optimal cultured duration, the microstructured surface is more favourable for cell survival, and the cell growth keep positive beyond critical aspect ratio. As a result, the cell adhesion ability is topologically controlled to 5.4 times higher and the growth rate can be improved by 101.7% on milled microgrooved surface. It may be applied to the rapid production of biomedical Ti-6Al-4V implant.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3