Abstract
Turbine blades must withstand severe loading conditions and damage can occur during operation due to heat, pressure, foreign objects and hot gas corrosion, despite the protective coatings applied onto the turbine blades. Instead of replacing the damaged components, maintenance, repair and overhaul are key to extend the total service life. Besides welding, the repair of turbine blades by brazing is an established repair process in the industry and involves many individual steps that often require a high degree of manual work. In the present study, a hybrid joining and coating technology was developed to shorten the state-of-the-art process chain for repairing turbine blades. With this approach, a repair coating, which consists of a filler metal, a hot gas corrosion protective layer and an aluminum top layer, is applied by atmospheric plasma spraying. The coated turbine blade then undergoes a heat-treatment so that a brazing and aluminizing process is carried out simultaneously. Due to diffusion and segregation processes, pores can occur in the heat-treated coating. In the present study, a full factorial design of experiment was performed to reduce the pores in the coating. The microstructure of the repair coating was investigated by optical- and scanning electron microscopy (SEM), and the impact of the process parameters on the resulting microstructure is discussed.
Funder
Deutsche Forschungsgemeinschaft
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献