Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology

Author:

Mallikarjuna BalichakraORCID,Reutzel Edward W.

Abstract

Titanium Aluminide (TiAl) alloys are intermetallics that offer low density, high melting point, good oxidation and corrosion resistance compared to Ni-based superalloys. As a result, these alloys are used in aero-engine parts such as turbine blades, fuel injectors, radial diffusers, divergent flaps, and more. During operation, aero-engine components are subjected to high thermal loading in an oxidizing and corrosive environment, which results in wear and other material damage. Replacement of the entire component may not be desirable due to long lead time and expense. In such cases, repair and refurbishing may be the best option for the reclamation of TiAl parts. Unfortunately, approved repair technology is not currently available for TiAl based components. Additive Manufacturing (AM) based Directed Energy Deposition (DED) may serve as an option to help repair and restore expensive aero-engine parts. In this work, a review of efforts to utilize the DED technique to repair damaged TiAl-based aerospace parts locally is conducted. Replacing the entire TiAl part is not advisable as it is expensive. DED is a promising technique used to produce, repair, rework, and overhaul (MRO) damaged parts. Considering the high-quality standard of the aircraft industry, DED repaired TiAl parts to be certified for their future use in the aircraft is very important. However, there are no standards for the certification of TiAl repaired parts is reported. Case studies reveal that DED is under consideration for repair of TiAl parts. Hybrid technology comprising machining, repair and finishing capability in a single machine is an attractive implementation strategy to improve repair efficacies. The review shows that the investigations into development and applications of DED-based repairing techniques are limited, which suggests that further investigations are very much needed.

Funder

This research work does not receive any financial assistance.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3